6378

Register Number Name of the Candidate:

M.Sc. DEGREE EXAMINATION, May 2015

(PHYSICS)

(SECOND YEAR)

210: WAVE MECHANICS AND QUANTUM MECHANICS

Time: Three hours Maximum: 100 marks

SECTION-A

(5×4=20)

Answer any FIVE questions

- 1. State and explain Heisenberg's uncertainty r elation.
- 2. Show that the expectation value of the square of an observable is always positive.
- 3. Write the Fermi's Golden Rule related to transition probability and interpret the meaning of the rule.
- 4. Explain the fundamental concept of WKB approximation.
- 5. What is meant by "Hermitian operator"? Write its properties and physical significance.
- 6. What do you understand by the terms differential cross section and total cross section in Quantum theory of scattering?
- 7. Write briefly the contribution of p-wave scattering to the total cross section.
- 8. Distinguish between "Laplacian operator" and 'De Alembertian operator".

SECTION-B Answer any FIVE questions

(5×16=80)

9. a) State and prove Ehrenfest Theorem.

- (10)
- b) Obtain the current density carried by a plane wave A.e ikx is one dimension and verify that it satisfies the equation of continuity in one dimension.
- 10. Solve the Schrödinger's wave equation for a particle moving in a one dimensional square well potential of finite depth and finite width and obtain its energy eigen values.
- 11. What are Einstein's co-efficients? Obtain Einstein's transition probabilities by a quantum mechanical perturbation treatment.
- 12. Explain the principles of variation al method in perturbation theory. Use it calculate of the Van der Waal's interaction between two hydrogen atoms in their ground state.
- 13. Explain the characteristics of raising and lowering operators. Solve the quantum mechanical problem of one dimensional Harmonic oscillator using ladder operator method.

- 14. Discuss the method of Born's approximation for scattering by screened columns potential field: discuss the conditions of validity.
- 15. Discuss the theory of partial wave analysis. Show that for a beam of low energy particles scattered by a rigid sphere, the scattering is isotropic. Find out the expression for scattering cross section.
- 16. Derive the Dirac's equation for an electron moving in an electrostatic field and show that the spin of the electron is a natural consequence of Dirac's mathematical formulation.
