Total No. of Pages: 1

Register Number:

Name of the Candidate:

M.Sc. DEGREE EXAMINATION, May 2021 (MATHEMATICS)

(SECOND YEAR)

210: COMPLEX ANALYSIS

Time: Three hours Maximum: 100 marks

SECTION - A

 $(8 \times 5 = 40)$

Answer any EIGHT questions

- 1. Prove that if all zeros of a polynomial P(z) lie in a half plane, then all zeros of the derivative P '(z) lie in the same half plane.
- 2. Prove that the set of all linear transformations form a non-abelian group for the composition of product of transformations.
- 3. Prove that if f(z) is analytic on a rectangle R, then $\int_{\partial R} f(z)dz = 0$ where ∂R denotes the boundary curve of R.
- 4. State and prove classical form of Weierstrass theorem.
- 5. State and prove mean value property theorem.
- 6. Derive the Poisson's formula in Cartesian co-ordinates.
- 7. Prove that the infinite product $\pi(1+a_n)$ converges iff Σ log (1+a_n) converges.
- 8. Derive Jensen's formula.
- 9. Prove that the sum of the residues of an elliptic function is zero.
- 10. Derive the first order differential equation $p'(z)^2 = 4p(z)^3 g_2p(z) g_3$.

<u>SECTION - B</u> Answer any THREE questions

 $(3\times20=60)$

- 11. State and prove Abel's Limit theorem.
- 12. State and prove the general statement of Cauchy's Theorem.
- 13. State and prove the Schwarz's theorem.
- 14. Prove the Hadamard's theorem.
- 15. Prove that any bases of the same module are connected by a unimodular transformation.
