F-3113

Sub. Code	
7PMA1C2	

M.Phil. DEGREE EXAMINATION, NOVEMBER 2019

First Semester

Mathematics

FUNCTIONAL ANALYSIS

(CBCS – 2017 onwards)

Time : 3 Hours

Maximum : 75 Marks

Section A

 $(5 \times 5 = 25)$

Answer any **five** questions.

- 1. Define the following terms :
 - (a) Vector space
 - (b) Topological space
 - (c) Hausdorff space
 - (d) Linear mapping.
- 2. Suppose that $(X_1 d_1)$ and $(Y_1 d_2)$ are metric spaces, and $(X_1 d_1)$ is complete. If E is a closed set in $X, f: E \to Y$ is continuous, and $d_2(f(x'), f(x'') \ge d_1(x', x''))$ for all $x', x'' \in E$, then prove that f(E) is closed.
- 3. Suppose A is a convex absorbing set in a vector space X. Prove that
 - (a) $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$
 - (b) $\mu_A(tx) = t \ \mu_A(x) \text{ if } f \ge 0.$

- 4. Write the usual notations, prove that L^p is a locally bounded F-space.
- 5. State and prove the Baire's theorem.
- 6. Suppose *M* is a subspace of a vector *X*, *P* is a seminorm on *X*, and *f* is a linear functional on *M* such that $|f(x)| \le p(x)$ $(x \in M)$. Prove that *p* extends to a linear functional \land on *X* that satisfies $|\land x| \le p(x)$ $(x \in X)$.
- 7. If X and Y are normed spaces and if $\wedge \in \mathfrak{B}(X,Y)$, then prove that $\|\wedge\| = \sup\{|<\wedge x, y^* > 1|: \|x\| \le 1, \|y^*\| \le 1\}$.
- 8. Define the following terms :
 - (a) Compact
 - (b) Invertible
 - (c) Spectrum of an operator
 - (d) Eigen value
 - (e) Direct sum.

Section B $(5 \times 10 = 50)$

Answer **all** questions, choosing either (a) or (b).

- 9. (a) Let \wedge be a linear functional on a topological vector space X. Assume $\wedge x \neq 0$ for some $x \in X$. Prove that each of the following four properties implies the other three.
 - (i) \wedge is continuous
 - (ii) the null space $\mathscr{N}(\wedge)$ is closed
 - (iii) $\mathscr{N}(\wedge)$ is not dense in X
 - (iv) \land is bounded in some neighborhood \lor of 0.

Or

 $\mathbf{2}$

(b) (i) If X is a complex topological vector space and

 $f: \mathcal{L}^n \to X$ is linear, then prove that f is continuous.

- (ii) Show that every locally compact topological vector space X has finite dimension.
- 10. (a) (i) Define Cauchy sequence. Also prove that sequence $\{x_n\}$ in X is a d-Cauchy sequence if and only if it is a τ -Cauchy sequence.
 - (ii) Define the following terms.

Bounded linear transformation, Seminorm, Minkouski functional μ_A , Quotient space of X modulo N,Quotient topology.

Or

- (b) (i) Prove that a topology vector space X is normable if and only if its origin has a convex bounded neighborhood.
 - (ii) Show that $C(\Omega)$ is a Frechet space.
- 11. (a) Suppose
 - (i) X is an F-space
 - (ii) *Y* is a topological vector space,
 - (iii) $\wedge: X \to Y$ is continuous and linear and
 - (iv) $\wedge(X)$ is of the second category in Y. Prove that the following:
 - (1) $\wedge (X) = Y$
 - (2) \wedge is an open mapping
 - (3) Y is an F-space.

Or

(b) (i) State the Banach-Steinhaus theorem.

Wk 10

3

F-3113

(ii) Define the following terms:

Bilinear mapping and separately continuous.

- (iii) State and prove the closed graph theorem.
- 12. (a) State and prove the Banach-Alaoglu theorem.

Or

- (b) State and prove Milman's theorem.
- 13. (a) If X and Y are Banach spaces and if $T \in \mathcal{B}(X,Y)$, then prove the following three conditions implies the other two
 - (i) $\mathcal{R}(T)$ is closed in Y
 - (ii) $\mathcal{R}(T^*)$ is week*-closed in X^* ;
 - (iii) $\mathcal{R}(T^*)$ is norm-closed in X^* .

Or

- (b) Suppose X is a Banach space, $T \in \mathcal{B}(X)$, and T is compact. Prove the following :
 - (i) If $\lambda \neq 0$, then the four numbers $\alpha = \dim \mathcal{N} (T - \lambda I), \ \beta = \dim X / \mathcal{R} (T - \lambda I)$ are equal and finite.
 - (ii) If $\lambda \neq 0$ and $\lambda \in \sigma(T)$ then λ is an eigen value of T and of T^* .
 - (iii) $\sigma(T)$ is compact, at most countable, and has at most one limit point, namely 0.

4

F-3113