F-1734

Sub. Code 7BITA4

U.G. DEGREE EXAMINATION, APRIL 2019

Information Technology

Allied: OPERATION RESEARCH

(CBCS - 2017 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 2 = 20)$

Answer all questions.

- 1. What is Operation Research?
- 2. What are the limitations of an O.R Model?
- 3. What is LPP?
- 4. Define Slack variable.
- 5. What is duality?
- 6. State Existence theorem of Duality.
- 7. Define an Unbalanced Assignment Problem.
- 8. What is the objective of traveling salesman problem?
- 9. Write the commonly used methods of finding BSF.
- 10. What is an unbalanced Transportation Problem?

Part B $(5 \times 5 = 25)$

Answer all questions, choosing either (a) or (b).

11. (a) Explain the general methods of solving O.R Models.

Or

- (b) What are the scope of O.R?
- 12. (a) Explain the procedure for forming a LPP model.

Or

(b) Solve the following LPP by the graphical method

Maximize $Z = 3x_1 + 2x_2$

Subject to

$$-2x_1 + x_2 \le 1$$

$$x_1 \leq 2$$

$$x_1 + x_2 \le 3$$

and
$$x_1, x_2 \ge 0$$

13. (a) Find the dual of the LPP

Maximize $Z = 3x_1 - x_2 + x_3$

Subject to

$$4x_1 - x_2 \le 8$$

$$8x_1 + x_2 + 3x_3 \ge 12$$

$$5x_1 - 6x_3 \le 13$$

and
$$x_{1,}x_{2,}x_{3} \ge 0$$

Or

- (b) Explain the steps involved in Branch and Bound Method.
- 14. (a) Give the mathematical formulation of Assignment Problem.

Or

(b) Write short notes on Travelling Salesman Problem.

F-1734

2

15. (a) Solve the following by Least Cost Method

To \mathbf{D} \mathbf{E} \mathbf{F} Supply 6 4 A 1 50 В 7 From 3 8 40 \mathbf{C} 2 4 4 60 95 20 35 Demand

Or

(b) Obtain an initial basic feasible solution to the following transportation problem using VAM.

	Store					
Warehouse		S_1	S_2	S_3	S_4	Availability
	A	5	1	3	3	34
	В	3	3	5	4	15
	\mathbf{C}	6	4	4	3	12
	D	4	1	4	2	19
	Demand	21	25	17	17	80
Part C						$(3 \times 10 = 30)$

Answer any three questions.

- 16. Explain the various phases in study of Operation Research.
- 17. Use Big -M Method to solve

Minimize $Z = 4x_1 + 3x_2$

Subject to

$$2x_1 + x_2 \ge 10$$

$$-3x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \ge 6$$

and
$$x_{1}, x_{2} \ge 0$$

F-1734

18. Solve the following LPP using duality

Minimize $Z = 2x_1 + 2x_2$

Subject to

$$2x_1 + 4x_2 \ge 1$$

$$-x_1 - 2x_2 \le -1$$

$$2x_1 + x_2 \ge 1$$

and
$$x_{1}, x_{2} \ge 0$$

19. Solve the following travelling salesman Problem:

 $1 \quad \textbf{-} \quad 6 \quad 12 \quad 6 \quad 4$

2 6 - 10 5

 $3 \ 8 \ 7 \ - 11 \ 3$

4 5 4 11 - 5

5 5 2 7 8

20. Solve the following transportation problem:

Destination

Origin

 D_1 D_2 D_3 D_4 D_5 D_6 Supply

 O_1 5 3 7 3 8 5 3

 O_2 5 6 12 5 7 11 4

 O_3 2 1 3 4 8 12 2

 O_4 9 6 10 5 10 9 8

Demand 3 3 6 2 1 2

4

F-1734