A - 8980

Sub. Code 4BCESA1

U.G. DEGREE EXAMINATION, NOVEMBER 2019

Computer Science

Allied – DIGITAL ELECTRONICS AND COMPUTER ARCHITECTURE

(CBCS - 2014 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(10 \times 2 = 20)$

Answer all questions.

- 1. Convert the decimal number 950 to equivalent hexadecimal number.
- 2. Show that $X + \overline{X}Y = X + Y$.
- 3. What is a decoder?
- 4. Draw the logic diagram and truth table for Half adder.
- 5. Draw the logic diagram of Basic flip-flop circuit with NOR gate.
- 6. Differentiate synchronous and Asynchronous counters.
- 7. What are the common fields found in instruction format?
- 8. What do you mean by addressing mode?
- 9. What is meant by locality of reference?
- 10. Write the need for virtual memory.

Part B $(5 \times 5 = 25)$

Answer all questions, choosing either (a) or (b).

11. (a) What are XOR and X NOR gates? Give truth tables for 2 input XOR and X NOR gates.

Or

- (b) What is the canonical form of logic expressions? Explain min terms and max terms.
- 12. (a) What are the various steps involved in the design procedure of combinational circuits? Discuss.

Or

- (b) Implement a full-subtractor with two half-subtractors and an OR gate.
- 13. (a) Describe the operations of R-S flip-flop with logic diagram and truth table.

Or

- (b) Explain briefly about the shift counters.
- 14. (a) Explain about the general register organization with neat diagram.

Or

- (b) Explain the organization of a stack. What are the instructions associated with it?
- 15. (a) With a neat diagram, explain the typical memory hierarchy in a large computer system.

Or

(b) What are the three types of mapping procedures in the cache memory organization? Discuss.

A-8980

2

Part C $(3 \times 10 = 30)$

Answer any **three** questions.

16. Simplify the Boolean function

 $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$ in sum of products and product of sums.

- 17. Describe the functions of multiplexer with an example of Boolean function implementation.
- 18. Explain the working of master / slave flip flop in detail.
- 19. Discuss on data transfer and manipulation instructions.
- 20. Describe the working of an associative memory and explain the match logic.

A-8980