6376

Register Number Name of the Candidate:

M.Sc. DEGREE EXAMINATION, May 2015

(PHYSICS)

(FIRST YEAR)

130: ELECTROMAGNETIC THEORY AND MODERN OPTICS

Time: Three hours Maximum: 100 marks

SECTION-A

(5×4=20)

Answer any FIVE questions

- 1. Why does Ampere's law need to be modified?
- 2. Explain the concept of dispersion and their types.
- 3. Write a short note on scattering of electro-magnetic waves.
- 4. Discuss the Babinet's principle.
- 5. Explain how the Laser differ from ordinary light sources.
- 6. List out the applications of laser.
- 7. Explain the principles of fibre optic communication.
- 8. What is holography? List out its applications.

SECTION-B

 $(5 \times 16 = 80)$

Answer any FIVE questions

- 9. a) Derive the continuity conditions for electric and magnetic fields at the interface of two media.
 - b) Explain in detail the physical significance of Maxwell's equations.
- 10. Obtain the expressions for the reflection and transmission co-efficients when a plane polarised wave is incident on an interface of two dielectrics.
- 11. Describe the Fabry-Perot interferometer with neat diagram and obtain the expression for its resolving power.
- 12. Discuss the Fraunhafer diffraction from rectangular and circular apertures with necessary theory.
- 13. What is the principle of Laser? Derive Einstein's relation for stimulated emission and explain the existence of stimulated emission.
- 14. Explain with neat diagram the principle, construction and working of CO₂ Laser. Also give their advantages, disadvantages and applications.
- 15. Explain the principle of total internal reflection. Derive an expression for acceptance angle and Numerical aperture of a fibre.
- 16. Distinguish between step index and graded index fibres. Explain the various losses involved in the transmission of signals through the fibres.
