Total No. of Pages: 2

5277

Register Number: Name of the Candidate:

B.Sc. DEGREE EXAMINATION, May 2015

(MATHEMATICS)

(THIRD YEAR)

(PART - III)

710. VECTOR CALCULUS AND LINEAR ALGEBRA

Time: Three hours Maximum: 100 marks

Answer any FIVE questions

 $(5 \times 20 = 100)$

- 1. a) If $\nabla \varphi = 2xyz^3\bar{i} + x^2z^3\bar{j} + 3x^2yz^2\bar{k}$, find $\varphi(x, y, z)$.
 - b) Show that $\nabla \cdot (f \times g) = g \cdot (\nabla \times f) f \cdot (\nabla \times g)$.
- 2. a) Find the constants a, b, c so that the vector $\bar{\mathbf{f}} = (x+2y+az)\bar{\mathbf{i}} + (bx-3y-z)\bar{\mathbf{j}} + (4x+cy+2z)\bar{\mathbf{k}}$ is irrotational.
 - b) If $\bar{\mathbf{f}} = (2y+3)\bar{t} + xz\bar{y} + (yz-x)\bar{k}$, evaluate $\int_C \bar{\mathbf{f}}.d\bar{r}$ along the path x=2t², y=t, z=t³ from t=0 to t=1.
- 3. Verify Gauss divergence theorem for $\bar{\mathbf{f}} = (x^2 yz)\bar{\mathbf{i}} + (y^2 zx)\bar{\mathbf{j}} + (z^2 xy)\bar{\mathbf{k}}$ taken over the rectangular parallelepiped $0 \le \mathbf{x} \le \mathbf{a}$, $0 \le \mathbf{y} \le \mathbf{b}$, $0 \le \mathbf{z} \le \mathbf{c}$.
- 4. a) $\begin{vmatrix} bc & b+c & 1 \\ ca & c+a & 1 \\ ab & a+b & 1 \end{vmatrix} = (a-b)(b-c)(c-a)$
 - b) Prove that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$
- 5. a) Define an idempotent matrix. Give an example.
 - b) Using Cayley-Hamilton theorem, find the inverse of the matrix

$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

- 6. a) Prove that matrix $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$ satisfies the equation A³–3A²+3A–2I=0 and hence find A⁴
 - Verify that whether the matrix $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix}$ is orthogonal.
- 7. a) Find the rank of the matrix $\begin{pmatrix}
 2 & -1 & 3 & 1 \\
 1 & -2 & -1 & 4 \\
 3 & 3 & 1 & 2 \\
 6 & 0 & 3 & 7
 \end{pmatrix}$
 - b) Prove that the following equations are consistent and hence solve them. X+2y-z=1; 3x+8y+2z=28; 4x+9y-z=14.
- 8. a) Show that the intersection of two subspaces of a vector space is a subspace and the union of two subspaces of a vector space need not be a subspace.
 - b) Let A and B be two subspaces of a vector space V. Prove that $A \cap B=\{0\}$ if and only if every vector $v \in A+B$ can be uniquely expressed in the form v = a+b where $a \in A$ and $b \in B$.
- 9. a) Let V be a vector space over a field F. Let A and B be subspaces of V. Prove that $\frac{A+B}{A}\cong \frac{B}{A\cap B}$
 - b) Prove that the vectors (1,1,0), (0,1,1), (1,0,1) are linearly independent in $V_3(R)$.
- 10. a) Show that any two bases of a finite dimensional vector space V have the same number of elements.
 - b) Prove that $\dim \frac{v}{w} = \dim v \dim w$.
