Register Number: Name of the Candidate:

B.Sc. DEGREE EXAMINATION, May 2015
 (MATHEMATICS)

(THIRD YEAR)
(PART - III)
710. VECTOR CALCULUS AND LINEAR ALGEBRA

Answer any FIVE questions

1. a) If $\nabla \varphi=2 x y z^{3} \bar{i}+x^{2} z^{3} \bar{j}+3 x^{2} y z^{2} \bar{k}$, find $\varphi(\mathrm{x}, \mathrm{y}, z)$.
b) Show that $\nabla .(\mathrm{f} \times \mathrm{g})=\mathrm{g} .(\nabla \times \mathrm{f})-\mathrm{f} .(\nabla \times \mathrm{g})$.
2. a) Find the constants a, b, c so that the vector $\overline{\mathrm{f}}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}$ is irrotational.
b) If $\overline{\mathrm{f}}=(2 y+3) \bar{i}+x \overline{\mathrm{j}}+(y z-x) \bar{k}$, evaluate $\int_{C} \overline{\mathrm{f}} . d \bar{r}$ along the path $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}$, $z=t^{3}$ from $t=0$ to $t=1$.
3. Verify Gauss divergence theorem for $\overline{\mathrm{f}}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
4. a)

Show that $\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
b)

Prove that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
5. a) Define an idempotent matrix. Give an example.
b) Using Cayley-Hamilton theorem, find the inverse of the matrix $\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$
6. a)

Prove that matrix $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{array}\right)$ satisfies the equation $A^{3}-3 A^{2}+3 A-2 \mathrm{I}=0$ and hence find A^{4}
b)

Verify that whether the matrix $A=\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right)$ is orthogonal.
7. a)

Find the rank of the matrix $\left(\begin{array}{cccc}2 & -1 & 3 & 1 \\ 1 & -2 & -1 & 4 \\ 3 & 3 & 1 & 2 \\ 6 & 0 & 3 & 7\end{array}\right)$
b) Prove that the following equations are consistent and hence solve them. $X+2 y-z=1 ; 3 x+8 y+2 z=28 ; 4 x+9 y-z=14$.
8. a) Show that the intersection of two subspaces of a vector space is a subspace and the union of two subspaces of a vector space need not be a subspace.
b) Let A and B be two subspaces of a vector space V. Prove that $A \cap B=\{0\}$ if and only if every vector $v \in A+B$ can be uniquely expressed in the form $v=a+b$ where $a \in A$ and $b \in B$.
9. a) Let V be a vector space over a field F. Let A and B be subspaces of V. Prove that $\frac{A+B}{A} \cong \frac{B}{A \cap B}$
b) Prove that the vectors $(1,1,0),(0,1,1),(1,0,1)$ are linearly independent in $\mathrm{V}_{3}(\mathrm{R})$.
10. a) Show that any two bases of a finite dimensional vector space V have the same number of elements.
b) Prove that $\operatorname{dim} \frac{v}{w}=\operatorname{dim} v-\operatorname{dim} w$.

