Total No. of Pages: 2

5280

Register Number: Name of the Candidate:

B.Sc. DEGREE EXAMINATION, May 2015

(MATHEMATICS)

(THIRD YEAR)

(PART - III)

740. OPERATIONS RESEARCH

Time: Three hours Maximum: 100 marks

Answer any FIVE questions

 $(5 \times 20 = 100)$

- 1. a) A company has three operational departments (weaving, processing and packing) with capacity to produce three different types of clothes namely suiting's, shirting's, and woollens yielding a profit of ₹ 2, ₹4 and ₹3 per meter respectively. One meter suiting requires 3 minutes in weaving, 2 minutes in processing and 1 minute in packing. Similarly one meter of shirting requires 4 minutes in weaving, 3 minutes in each department. In a week, total run time of each department is 60, 40 and 80 hours for weaving processing and packing department respectively. Formulate L.P.P. model.
 - b) Solve the LPP graphically

Max $Z=3x_1+2x_2$

Subject to

 $-2x_1+x_2=1$

 $x_1 \ge 3$

 $x_1 + x_2 \le 3$

 $x_1, x_2 \ge 0$

2. Using simplex method solve the following LPP

 $\text{Max } Z = x_2 - 3x_3 + 2x_5$

Subject to

 $3x_2-x_3+2x_5 \le 7$

 $-2x_2+4x_3 \le 12$

 $-4x_2+3x_3+8x_5 \le 10$

 $x_2, x_3, x_5 \ge 0$

3. Use two-phase method to

Maximize $Z=3x_1-x_2$

Subject to

 $2x_1+x_2\geq 2$

 $x_1 + 3x_2 \le 2$

 $x_2 \le 4$

 $x_1, x_2 \ge 0$

4. a) Obtain the dual of the following L.P.P.

Maximize $Z=2x_1+x_2$

Subject to $x_1+5x_2 \le 10$

 $x_1 + 3x_2 \ge 6$

 $2x_1+2x_2 \le 8$; $x_2 \ge 0$ and x_1 unrestricted

b) Solve the following LPP using dual simplex method Minimize $Z=2x_1+x_2$

Subject to

 $3x_1+x_2 \ge 3$

 $4x_1+3x_2 \ge 6$

 $x_1 + 2x_2 \le 3$

 $x_1, x_2 \ge 0$

5. Solve the following transportation problem by using north-west corner method

				To			
		I	II	III	IV	V	Availability
	Α	2	4	6	8	9	20
From	В	2	10	1	5	8	30
	C	7	11	20	40	3	15
	D	2	1	9	14	16	13
Require	ment	40	6	8	18	6	1

6. Solve the following assignment problem

	1	2	3	4	5
Α	(8	4	2 5 9	6	1
В	0	9	5	6 5 2	4
C	3	8	9	2	6
D	4	4 9 8 3 5	1	0	3
A B C D	8 0 3 4 9	5	8	9	5 1 4 6 3 5

7. Find the optimal sequences, the total minimum elapsed time and idle time for each machines

Task:	Α	В	С	D	E	F	G	Н	I
Machine 1:	2	5	4	9	6	8	7	5	4
Machine 2:	6	8	7	4	3	9	3	4	11

- 8. A contractor has to supply 10,000 bearings per day to an automobile manufacturer. He finds that when he starts a production run, he can produce 25,000 bearings per day. The cost of holding a bearing in stock for one year is ₹ 2 and the set-up cost of a production run is ₹1800. How frequently should production run be made?
- 9. A manufacturer is offered machines A and B. A is priced at ₹ 5000 and running costs are estimated at ₹800 for each of the first 5 years, increasing by 200 per year in the 6th and subsequent years. Machine B, which has the same capacity as A costs ₹2500 but will have running costs of ₹1200 per year for six years, increasing by ₹200 per year thereafter. If the rate of interest is 10% per year, which machine should be purchased. Assume that the machines have no resale price.
- 10. a) Explain about the systems with component in series and systems with parallel components.
 - b) The mean life of a component is equal to 20 hours. It is proposed to increase reliability by 25% for a mission time equal to 40 hours. What should be the mean life of the improved design assuming exponential failure characteristics?
