Total No. of Pages: 2

Register Number: Name of the Candidate:

B.Sc. DEGREE EXAMINATION, May 2015

(CHEMISTRY)

(SECOND YEAR)

(PART-III)

660/650: MATHEMATICS-II

(GROUP-B: ANCILLARY-I)

(Common with B.Sc(Electronic Science) & (Physics) & (Applied Chemistry))

Time: Three hours

Maximum: 75 marks

(5×15=75)

Answer any FIVE	questions
-----------------	-----------

1. a) Obtain a reduction formula for $\int \cos^n x \, dx$ (where n is a positive integer) and $\frac{\pi}{2}$

hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos^{n} x dx$.

- b) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^8 x \, dx$ ss
- 2. Evaluate ∫∫∫_s F.n dS, where F = 4xzi-y²j+yzk and S is the surface of the cube bounded by x =0, x=1, y=0, y=1,z=0, z=1

3. a) Solve
$$(D^2 - 3D + 2)y = e^{2x}$$

- b) Solve $(D^2-5D+6)y = \sin 3x$
- 4. a) Solve $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$

b) Solve x-yp=ap² where
$$p = \frac{dy}{dx}$$

- 5. a) Solve (y+z)p+(z+x)q=(x+y)
 - b) Obtain the general solution of the partial differential equation p+q=pq

6. a) Solve
$$z = px + qy + P^2 + q^2$$

- 7. Express $f(x)=x^2$ as Fourier series with period 2π , to be valid in the interval $-\pi$ to π . Deduce from this that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$
- 8. Find a Fourier cosine transform for f(x) defined by

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 1 & for \mid x \mid < 1 \\ 0 & for \mid x \mid > 1 \end{cases}$$

Hence deduce that $\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$

9. a) Find L
$$\left[\frac{e^{-2t}}{3}(3\cos 3t - 5\sin 3t)\right]$$

b) Find L⁻¹
$$\left[\frac{1}{(s^2((s^2+1)(s^2+9))} \right]$$

10. Solve the equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4$, given that y = 2, $\frac{dy}{dx} = 3$ when x = 0.
